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Ultraclean crystals of Sr3Ru2O7 undergo a metamagnetic transition at low temperatures. This transition
shows a strong anisotropy in the applied field direction with the critical field Hc ranging from �5.1 T for H
perpendicular to c to �8 T for H �c. In addition, studies on ultrapure samples revealed a bifurcation of the
metamagnetic line for fields in c direction and it has been argued that a nematic phase emerges between the
magnetization jumps. The aim of this study is to explain the field-direction anisotropy of these phenomena.
Based on a microscopic tight-binding model, we introduce the metamagnetic transition by means of a Van
Hove singularity scenario. We show that the rotation of the O octahedra around the c axis observed in this
material introduces a staggered spin-orbit coupling within the planes and naturally leads to an anisotropy in the
low-temperature behavior around the metamagnetic transition. In particular, the low-temperature �nematic�
phase is affected. We show that uniform in-plane magnetic fields induce a �commensurate� staggered magnetic-
moment component which can suppress the low-temperature phase. In contrast, the response to fields along the
c axis remains unaffected and thus, also the corresponding low-temperature phase. As a concrete example, we
choose a nematic Pomeranchuk instability for the low-temperature phase. An experimentally testable prediction
of this work is the occurrence of a staggered magnetic moment in response to a uniform magnetic field
perpendicular to the c axis, which should be accessible by neutron scattering.
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I. INTRODUCTION

The ruthenium compounds of the Ruddlesden-Popper se-
ries, Srn+1RunO3n+1, have been the subject of intensive re-
search for over a decade due to their interesting ground
states. While the quasi-two-dimensional single layer �n=1� is
an unconventional superconductor likely with p-wave
pairing,1 there is a growing tendency toward ferromagnetism
with increasing layer number. The three-dimensional
infinite-layer compound, SrRuO3, indeed realizes an itinerant
ferromagnet.2 The bilayer compound �n=2� with its interme-
diate dimensionality, however, shows no ordering down to
lowest temperatures3 and is supposed to be a strongly corre-
lated Fermi liquid. Still, applying uniaxial pressure can in-
duce a ferromagnetic transition and this compound is, thus,
expected to be on the verge to a ferromagnetic instability.4

This is also supported by inelastic neutron scattering5 and
band-structure calculations.6

As was first discussed by Wohlfarth and Rhodes,7 such
proximity to ferromagnetism can result in metamagnetic be-
havior, a superlinear rise in the magnetization over a narrow
region of applied magnetic field H. This phenomenon was
observed in a number of systems8 and also in Sr3Ru2O7 it
was found9 with a critical field Hc, however, that depends
strongly on the angle of the field versus the ab plane. While
for �=0°, the critical field Hc�5.1 T, it rises to Hc�8 T
for �=90°. In addition, a first-order transition occurs for in-
plane fields below T��1.25 K while there is only a cross-
over for fields parallel to c. It was therefore suggested that
the field angle could be used as a tuning parameter for a line
of first-order transitions that goes to T�=0 around �=80°,
thus realizing a quantum critical end point10 �see schematic
phase diagram in Fig. 1�.

However, when trying to reach this quantum critical end
point on ultrapure single crystals with residual resistivities

down to �0�1 �� cm, a splitting of the metamagnetic tran-
sition into two jumps was observed. These jumps define an
intermediate phase whose exact boundaries could be deter-
mined by measuring of several thermodynamic properties.11

Later, it was shown that this phase breaks the symmetry of
the crystal12 and it was argued that this was due to an in-
duced anisotropic electronic state with a symmetry-breaking
Fermi-surface deformation similar to a Pomeranchuck
instability.13 That this kind of a phase, also called nematic
phase in analogy to liquid crystal phases, can lead to two
consecutive metamagnetic transitions had already been
shown in a paper by Kee and Kim.14 In addition, the anoma-
lous T dependence of the susceptibility � and the specific-
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FIG. 1. Schematic phase diagram of Sr3Ru2O7 for fields H ap-
plied with an angle � versus the ab plane. The surface represents
first-order transitions separating a region with low �spin� polariza-
tion from a region with high polarization. The thick black line con-
necting �� ,H ,T�= �0° ,5 T,1.2 K� and �80° ,8 T,0 K� is a line
of critical end points. For details see main text.
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heat coefficient � could be explained.15 Moreover, the two-
fold degeneracy of the nematic phase allows for domain
formation, such that domain-wall scattering could account
for the increased resistivity of the intermediate phase.16

The electronic structure of a single layer of Sr3Ru2O7 is
dominated by bands originating from the 4d t2g orbitals dyz,
dzx, and dxy hybridizing with the O 2p orbitals. This leads in
a simple approximation to two quasi-one-dimensional bands
with mainly dyz and dzx character and a two-dimensional
band stemming from the dxy orbital. These three bands are
then additionally split due to the interlayer coupling resulting
in six bands. An important consequence of the bilayer split-
ting is that one of the two bands coming from the dxy orbitals
is shifted closer to the Van Hove singularity. This was also
confirmed by recent angle-resolved photoemission spectros-
copy �ARPES� measurements.17 A chemical potential in the
vicinity of a Van Hove singularity is the condition for the
scenario described by Binz and Sigrist18 for a metamagnetic
transition. Proximity to a Van Hove singularity can also lead
to a nematic phase accompanying a metamagnetic transition
as described by Grigera et al.11 The anisotropy in the critical
field strength could then be explained by spin-orbit coupling
�SOC� effects similar to19 leading to an anisotropic effective
g factor.

A different route is taken by Raghu et al.20 and Lee et
al.21 who studied a model where the metamagnetic transition
comes from the two �bilayer-split� one-dimensional bands.
The anisotropy is then again introduced by considering spin-
orbit interaction on the Ru sites and the nematic phase can be
understood as an orbital ordering among these one-
dimensional bands.

Both these routes suffer, however, from a shortcoming:
even though they can describe the existence of a nematic
phase and a dependence of Hc on the field angle, they cannot
explain why the nematic phase occurs only for fields almost
parallel to the crystalline c axis.

We will address this point in the present work. We study a
model based on a two-dimensional band in a single layer
originating from the dxy orbitals. The bilayer effects are only
taken into account by placing this band closer to the Van
Hove singularity. Starting from this, we will consider the
effect of a lattice distortion in the planes. The O octahedra in
Sr3Ru2O7 are rotated by 6.8° �Ref. 22� and we will show
how this introduces a staggered spin-orbit coupling, an effect
similar to the Dzyaloshinski-Morya interaction for localized
spins, here, however, for itinerant electrons. For magnetic
fields applied in the plane, this will add a component with
wave vector Q= �� ,�� to the static susceptibility. The in-
duced commensurate spin-density wave �SDW� will open
gaps in the Fermi surface close to the Van Hove points which
will have an impact on the occurrence of any instability that
emerges due to the proximity to a Van Hove singularity. We
choose here the electronic nematic phase to examine this
aspect since it relies on the presence of the Van Hove singu-
larity and represents one of the most promising candidates
for the intermediate phase. In order to discuss the essential
influence of the spin-orbit coupling on the phase diagram, we
adopt here a mean-field approach, with the shortcoming that
critical fluctuations are not included well. While, in particu-
lar, quantum critical fluctuations represent an intriguing part

of the phenomenology of this metamagnetic transition, we
assume that they are not essential to understand the basic
effects due to spin-orbit coupling and lie beyond the scope of
this study.

This paper is organized as follows: in Sec. II, we will
introduce our model based on a three-band Hamiltonian con-
sisting of the Ru 4dxy orbital and the in-plane O 2p orbitals.
After reducing this model to an effective one-band model,
we will analyze the effect of a rotation of the oxygen octa-
hedra on it. On-site interactions are then treated within
mean-field theory and an additional applied magnetic field is
considered. The resulting model is then studied in a next
section. Following Metzner et al.,23 we will in Sec. IV add a
forward-scattering term to allow for a nematic phase and
study the influence of the staggered spin-orbit coupling to
this phase. In the last section, we will discuss and summarize
our findings.

II. MODEL

A. Basic hopping Hamiltonian

The starting point for our model is a three-band tight-
binding model including the in-plane 4d Ru orbital �dxy� and
two 2p O orbitals �px and py� with on-site energies Ed and
Ep=Ed−	, respectively. In this model, an electron can hop
from a dxy orbital in x�y� direction to a py�px� oxygen orbital
and vice versa with the hopping integral tdpy

�tdpx
�. Addition-

ally, due to strong hybridization of the oxygen 2p orbitals,
electrons can hop between neighboring oxygen orbitals. This
leads to a Hamiltonian of the form

H3b = �
s

C� s
†� Ed t̃dpx

t̃dpy

t̃dpx
Epx t̃pp

t̃dpy
t̃pp

Epx

�C� s, �1�

where C� †= �d† , px
† , py

†� are the creation operators for the
above-mentioned orbitals. Care has to be taken of the differ-
ent signs of the hopping integrals due to the phase of the
orbital wave functions indicated by the tildes �see Fig. 2�.

To integrate out the high-energy degrees of freedom and
thus, to reduce our model to one band, we construct an ef-
fective Hamiltonian only living at the Ru sites,24,25

Hef f = �
p

H3b	p
�p	H3b

Ed − Ep
+ �

pp�

H3b	p
�p	H3b	p�
�p�	H3b

�Ed − Ep��Ed − Ep��
,

�2�

where the sums run over all oxygen orbitals on all sites. This
leads to a simple hopping Hamiltonian,

H�0� = − t�
�i,j


�
s

cis
† cjs − t��

�i,j�
�

s

cis
† cjs, �3�

where cis
† creates an electron at Ru site i with spin s, �i , j


denotes nearest neighbors �nn’s� and �i , j� next-nearest
neighbors �nnn’s�. The hopping integrals in this effective
Hamiltonian then read to lowest order,
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t =
tdp
2

	
and t� =

tdp
2 tpp

	2 �4�

with tdpx
= tdpy

= tdp.
If we additionally take the rotated oxygen octahedra into

account, we obtain a bipartite lattice leading to a �2
�2
larger unit cell separating A and B sublattices �see Fig. 3�. A
consequence is that the formerly symmetry-forbidden hop-
ping in x �y� direction via px�py� orbitals is now possible
with matrix element tdp� as is depicted in Fig. 4. Thus, we
include spin-orbit coupling at the oxygen site, HO 2p=�LzSz,
which mixes the px and py orbitals. We therefore need to
change to eigenfunctions of the spin-orbit coupling, 	� 
,
with HO 2p	� 
= ��s	� 
, s= �1 the spin index.

As an example, we write the total Hamiltonian for the
sublattice A for the x direction,

HA
�x� = − �

j�A
�

s

�t̃djs
† p+,j+x̂/2s + t̃�djs

† p+,j−x̂/2s + H.c.�

− �
j�A

�
s

�t̃�djs
† p−,j+x̂/2s + t̃djs

† p−,j−x̂/2s + H.c.�

− �
=�

�
as

�	 � �s�p,as
† p,as, �5�

where p�,j+x̂/2s
† creates an electron at the oxygen site j+ x̂ /2

in the 	� 
 state with spin s and

t̃ =
tdp� − itdp

�2
. �6�

Applying perturbation theory in the from of Eq. �2� to this
Hamiltonian to construct an effective model, we find for the
hopping integral from a site A to a site B in the positive x
direction,

�A	Hef f	B
 =
t̃2

	 + �s
+

�t̃*�2

	 − �s

= − �tpd
2 − tpd�

2�
	

	2 − �2 + is
2�tpdtpd�

	2 − �2

= − t + i�s . �7�

Hence, we have a total Hamiltonian H=H�0�+Hsoc with a
nn- and nnn-hopping Hamiltonian H�0� and a staggered spin-
dependent hopping with the form of a staggered SOC of
Rashba type,

Hsoc = �
ss�

− i��
j�A

�
â=x̂,ŷ

�cj+âs
† cjs� − cjs�

† cj+âs��ss�
z

+ i��
j�B

�
â=x̂,ŷ

�cj+âs
† cjs� − cjs�

† cj+âs��ss�
z � . �8�

Note that the nnn-hopping integrals, even though renormal-
ized, do not become anisotropic, which can be deduced from
geometrical considerations as indicated in Fig. 3.

−tpp

−tpp

tpp

tpp

tdpy

tdpx

−tdpy

−tdpx

FIG. 2. Different hoppings in the three-band model of Ru 4dxy

and O 2px / py orbitals. The relative signs of the hopping integrals
come from the phases of the orbital wave functions.
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FIG. 3. �Color online� The RuO2 plane with rotated oxygen
octahedra leading to a doubling of the unit cell. The two distinct
lattice sites are denoted as A and B. The inversion symmetry of the
bonds between Ru ions is broken leading to a staggered spin-
dependent nearest-neighbor hopping. The next-nearest-neighbor
hopping is still isotropic and the same for both lattice sites as is
depicted by the different, equivalent hopping paths �bold solid,
dashed lines for A to A and dotted line for B to B�.
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−tdp tdp
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t
′
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−t
′
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′
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FIG. 4. Possible hoppings for the three-band model in the case
of rotated O6 octahedra. The sign change in the hopping integrals is
due to the phase of the Wannier functions and holds in first order.
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The bipartite lattice introduces a wave vector Q= �� ,��
with which the total Hamiltonian in momentum space reads

H =
1

2�
ss�

�
k

�c�ks
† ��k

�1� + �k
�2� − � igk�ss�

z

− igk�ss�
z

− �k
�1� + �k

�2� − �
�c�ks�,

�9�

where c�ks
† = �cks

† ,ck+Qs
† �. Here, �k=−2t�cos kx+cos ky�

−4t� cos kx cos ky =�k
�1�+�k

�2� are the hopping energies for nn
and nnn hoppings and gk=2��cos kx+cos ky� is the form fac-
tor for the spin-orbit coupling. The prime in the k summation
indicates that the summation runs only over the reduced first
Brillouin zone �BZ�. As this restriction will hold for all sub-
sequent k sums, we will omit the prime in the following.

The staggered SOC hybridizes states with k and k+Q. It
is now convenient to introduce Pauli matrices ��0 ,��� in mo-
mentum space �k ,k+Q� such that we can write the Hamil-
tonian as

H = �
kss�

c�ks
† Hkss�c�ks� �10�

with

Hkss�
�0� = ��k

�2� − ���ss�
0 �0 + �k

�1��ss�
0 �z − gk�ss�

z �y . �11�

Diagonalizing this Hamiltonian yields two �spin-degenerate�
bands,

��ks = �k
�2� + �− 1�����k

�1��2 + gk
2 , �12�

where �=1,2. The first Brillouin zone is folded back, as can
be seen in Fig. 9�a�, where the Fermi surface is plotted. This
is in accordance with the doubling of the unit cell introduced
by the rotated oxygen octahedra.

B. Magnetization and on-site interaction

Before adding an on-site interaction to the Hamiltonian
�10�, we first want to examine the effect of an applied mag-
netic field. From the form of Eq. �11�, we first see that a
magnetic field in z direction is a mere spin-dependent shift of
the chemical potential. The response of the system is thus a
simple polarization. However, for in-plane fields, the stag-
gered spin-orbit coupling introduces a coupling of homog-
enous magnetic fields to a staggered magnetization, i.e., a
commensurate SDW. This means that the static spin suscep-
tibility has a component with wave vector Q.

To see this, we add a Zeeman term of the form

HZ = g�B�H� 0 · S��0� + H� Q · S��Q�� �13�

with the spin operators,

S��q� =
1

2�
k

ck+qs
† �� ss�cks� = �

k
S�k�q� , �14�

�B the Bohr magneton and the Landé factor g. This corre-
sponds to a homogenous and a staggered magnetic field, in
accordance with the structure of the Hamiltonian given in
Eq. �11� and can, thus, be written as

Hkss�
Z = �h�0 · �� �0 + h�Q · �� �x� . �15�

Here, we have introduced h�0/Q� =H� 0/Q� /H0 where H0=2

10−4t / �g�B�. It is now straightforward to calculate the
magnetic response of the system to an applied field by using
the thermodynamic relation

�m0/Q
i 
 = −

�

�h0/Q
i F�T,h�0,h�Q,N� , �16�

where �m0
i 
 is the homogenous magnetization pointing in the

i direction while �mQ
i 
 corresponds to a staggered magneti-

zation. Using Eq. �15� together with Eq. �10�, we find for the
case of a homogeneous field in x direction a finite staggered
magnetization in y direction,

�mQ
y 
 = �

�=1,2
�
�=�

�
k

nF����,k�
�− 1��gk

��h0
x � �k

�1��2 + gk
2

. �17�

In the above equation, ���,k=�k
�2�+ �−1����h0

x ��k
�1��2+gk

2 are
the four energy bands in a homogenous field in x direction
and nF��� is the Fermi distribution function.

If we introduce an on-site interaction term to the Hamil-
tonian,

HU = U�
i

ni↑
a� ni↓

a� �18�

which we want to treat within mean-field theory, we first
have to choose an appropriate spin-quantization axis �indi-
cated by the superscript a��. For simplicity, we only consider
the two cases of an applied magnetic field in z and in x
direction.

1. Field applied in z direction

Since a field perpendicular to the plane does not couple to
any staggered magnetization, the first case is straightforward.
The quantization axis is the z axis and we write

HU = U�
i
 �ni↑ + ni↓�2

4
−

�ni↑ − ni↓�2

4
� . �19�

Since we do not expect large fluctuations in the charge den-
sity, the first term is a constant and, thus, the interaction can
be written as

HU = − U�
i

Si
zSi

z �20�

with Si
z= �ni↑−ni↓� /2. Applying mean-field theory to this ex-

pression and changing to momentum space yields

HU = − 2UMz�
k

Sk
z �0� + UN�Mz�2 �21�

with Mz= �Si
z
 independent of site i. Therefore, this leads to

an additional term in Eq. �11�,

Hk
U = − UMz�z�0 + U�Mz�2. �22�

The total Hamiltonian now reads
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Hkss� = Hkss�
�0� + h̃0

z�z�0 �23�

with the effective magnetic field h̃0
z =h0

z −UMz for simplicity.
This Hamiltonian has four eigenenergies,

��ks = �k
�2� + sh̃0

z + �− 1���gk
2 + ��k

�1��2 − � �24�

and via the grand-canonical potential per lattice site,

� = − T �
�=1,2

�
ks

log�1 + exp�− ��ks/T�� + U�Mz�2, �25�

the self-consistency equations can be derived as

n =
1

N
�

�=1,2
�
ks

nF���ks� , �26�

Mz =
1

2N
�

�=1,2
�
ks

snF���ks� . �27�

2. Field applied in x direction

The case of a field in x direction is slightly more involved
since we expect an additional response in form of a staggered
magnetization in y direction leading to a canted magnetiza-
tion in x direction. Therefore, we define an angle � for the
canting angle and denote with M the total moment �see Fig.

5�. The quantization axis, â and b̂ for the spin on lattice sites
A and B, respectively, in Eq. �18� should therefore be per-
pendicular to z and tilted away from the x direction by the
angle �. We start from Eq. �20� and decouple to find

HU = − U�
i�A

Si
âSi

â − U�
i�B

Si
b̂Si

b̂ = UNM2 − 2UM�
i�A

�Si
x cos �

+ Si
y sin �� − 2UM�

i�B

�Si
x cos � − Si

y sin �� . �28�

Changing again to momentum space, this results in an addi-
tional term in the total Hamiltonian,

Hk
U = − �UM cos ���x�0 − �UM sin ���y�x + UNM2

�29�

which then becomes

Hkss� = Hkss�
�0� + h̃0

x�x�0 + m̃y�y�x �30�

with m̃y =−UM sin � and

h̃0
x = h0

z − UM cos � . �31�

The eigenvalues read

�1�,k = �k
�2� − ��m̃y � gk�2 + �h̃0

x � �k
�1��2 − � ,

�2�,k = �k
�2� + ��m̃y � gk�2 + �h̃0

x � �k
�1��2 − � .

Again, the self-consistency equations can be deduced from
the grand-canonical potential and are

n =
1

N
�
�

�
�=�

�
k

nF����,k� , �32�

0 =
UM

N
�
�

�
�=�

�
k

nF����,k�
����,k

��
, �33�

M =
1

2N
�
�

�
�=�

�
k

nF����,k�
����,k

�M
�34�

with

����,k

��
= �− 1��

�gk cos � − �h0
x/2 � �k

�1��sin �

��m̃y � gk�2 + �h̃0
x � �k

�1��2
, �35�

����,k

�M
= �− 1��

�h0
x/2 � �k

�1��cos � − UM � gk sin �

��m̃y � gk�2 + �h̃0
x � �k

�1��2
.

�36�

From Eqs. �33� and �35�, it follows trivially that there is
only a canted magnetization if there is a finite SOC.

III. RESULTS

A. Field in z direction

Since a metamagnetic transition is expected to occur close
to magnetic instabilities, we investigate their occurrence
from Eq. �27�. The linearized self-consistent equation yields
the condition

1 −
U

N
�
�k

1

4T cosh2���ks/2T�
= 0 �37�

for the occurrence of a ferromagnetic instability, the familiar
Stoner criterion. This is not surprising since, apart from the
folding of the Brillouin zone, the staggered spin-orbit cou-
pling in the case of a magnetic field in z direction only leads
to a renormalization of the nearest-neighbor hopping �cf. Eq.
�24��. The critical interaction strength for a ferromagnetic
instability to occur as a function of the electron density, n, is
shown in the left part of Fig. 6 �solid line�. It drops signifi-
cantly close to a density of nvH�1.35. This corresponds to
�vH=4t� where the Fermi surface hits the Van Hove points

A A AB B

M
θ θ θθθ

Hx

FIG. 5. Real-space schematic of the magnetic order for the case
of an applied field in the xy plane. Due to the staggered spin-orbit
coupling, the magnetization is also staggered with respect to the
sublattice sites A and B with order parameter M and � for the total
moment and canting angle, respectively.

EFFECT OF A STAGGERED SPIN-ORBIT COUPLING ON… PHYSICAL REVIEW B 81, 064435 �2010�

064435-5



located at ��� ,0� and �0, ���, thus leading to a diverging
density of states. This divergence is shown in the right part
of Fig. 6, where the density of states in zero field is plotted.

For a further analysis of the metamagnetic transition with
applied field in z direction, we fix the density of electrons
slightly below nvH, n=1.336, and choose an interaction
strength U close to the critical one obtained from the linear-
ized self-consistency equation �see Fig. 6�. Here and in fol-
lowing numerical calculations, we keep the spin-orbit cou-
pling strength at �=0.05t. The magnetization curve obtained
is shown in Fig. 7. To emphasize the first-order nature of the
transition at T=5
10−4t, the inset shows the free energy at
the critical magnetic field as a function of magnetization Mz

for values between 0.005 and 0.01.

B. Field in x direction

For the case of the field applied in x direction, we can
again explore the occurrence of a magnetic instability by
linearizing the self-consistency Eq. �34�, leading to

1 −
U

N�
��

�
k

1

4T cosh2����,k/2T�
�gk sin � + �k

�1� cos ��2

gk
2 + ��k

�1��2

+ �
��

�
k

nF����,k��− 1��
�gk cos � − �k

�1� sin ��2

�gk
2 + ��k

�1��2�3/2 � = 0.

�38�

To further analyze this, it is useful to change to different
order parameters, from �M ,�� to �Mx=M cos � , My

=M sin �� with Mx the uniform magnetization in x direction
and My the staggered component in y direction, respectively.
Writing the self-consistency equations in these new param-
eters,

Mx =
1

2N
�
�,�

�
k

nF����,k�
�− 1�����k

�1� − UMx�
��m̃y � gk�2 + �h̃0

x � �k
�1��2

,

My =
1

2N
�
�,�

�
k

nF����,k�
�− 1����gk − UMy�

��m̃y � gk�2 + �h̃0
x � �k

�1��2

and linearizing this system of equations,

�Mx

My � =���xM
x �yM

x

�xM
y �yM

y ��
Mx=My=0

�Mx

My � �39�

leads to two different possible magnetic instabilities,

0 = 1 −
U

N
�
�k

1

4T cosh2����,k/2T�
, �40�

0 = �t2 + �2 +
U

N
�
�k

�− 1��nF����,k�
2	cos kx + cos ky	

. �41�

The first one is the same as Eq. �37� and corresponds to a
ferromagnetic instability. The second equation corresponds
to a SDW instability occurring due to the near nesting of the
Fermi surfaces. Note, however, that in both cases, the mag-
netization will have a uniform as well as a staggered com-
ponent.

The solutions of these equations as functions of the elec-
tron filling, n, are plotted in Fig. 6. We see that the critical
interaction strength for the spin-density wave instability is
generally below the one for a ferromagnetic instability but
shoots up when approaching the critical filling.

We can now interpret the linearized Eq. �38� as having a
ferromagnetic and a spin-density wave contribution. Proxim-
ity to a SDW instability additionally lowers the critical inter-
action strength. Therefore, the metamagnetic transition could
occur at a lower field then in the z-direction case, especially
close to a SDW instability.

The magnetization due to a magnetic field applied in
plane, as well as the amplitude of the staggered magnetiza-
tion, are plotted in Fig. 8. Again, we find a first-order tran-
sition for lower temperatures while the transition changes to
a crossover upon increasing temperature. Note that the sign
of My depends on the sign of the spin-orbit coupling constant
�. There is no degeneracy in the state obtained which could
lead to domain formation.

ρ(E)
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2

2.4

1.32 1.33 1.34 1.35

U
c

[t
]

n
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-2

0

2

4

0 0.5 1 1.5 2

E
[t
]

1.2

FIG. 6. Left figure: critical interaction strength for the ferromag-
netic �solid line� and the SDW instability �dashed line�. The crosses
denote the choices for the interaction strength used for the two
densities in Fig. 14. Right figure: density of states in the absence of
an external field showing the Van Hove singularity at �=4t�
=1.44t �dashed line�.

Mz

0.002

0.004

0.006

0.008

0.01

0.012

0 1 2 3 4 5 6

M
z

Hz/H0

f

0

FIG. 7. Magnetization for n=1.336 for an applied field in z
direction for a temperature of T=5
10−4t. Inset: the free energy f
for H=Hc as a function of magnetization between Mz=0.005 and
0.01 to emphasize the first-order character of the metamagnetic
transition.
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C. Comparison

Comparing the two cases of fields applied in z and x di-
rections in Figs. 7 and 8, respectively, we first see that the
critical field for the latter is shifted to lower fields, even
though the zero-field susceptibilities differ by less then a
percent, �0

z /�0
x �0.998. This is due to the proximity of the

system to a SDW instability as was pointed out in the previ-
ous section.

This behavior is in qualitative agreement with the experi-
mental phase diagram �see the schematic phase diagram in
Fig. 1�. However, the difference of the in-plane and out-of-
plane critical field is smaller in our model calculation than in
the experiment. Our model only includes the staggered spin-
orbit coupling entering through the oxygen displacement.
Naturally, other spin-orbit coupling contributions, particu-
larly from the Ru ions, would add to the anisotropy through
an anisotropic g tensor, likely with a larger polarizability in
the basal plane than along the z axis.19 This is, however,
beyond the scope of this study as a detailed analysis would
require to include other bands.

Second, a numerical study of the Gibb’s free energy
shows that the temperature T� up to which the first-order
transition persists, is higher in the case of the in-plane field.
For our choice of parameters, we find Tz

��9
10−4t while
Tx

��11
10−4t. This anisotropy in the critical temperature is
consistent with the trend in the experimental situation. How-
ever, it does not reproduce the quantum critical end point.
Note, that the difference between Tz

� and Tx
� could not be

explained simply by an anisotropic g tensor. In principle, it
may be possible to tune the model in such a way as to press
the critical temperature for out-of-plane fields, Tz

� to zero
while still having a first-order transition at finite tempera-
tures for in-plane fields. Also fluctuation effects are likely
important in this context. These features are, however, not
essential to our discussion.

An additional important difference between in-plane and
out-of-plane fields can be seen in Fig. 9, where the Fermi
surfaces for both cases for fields below and above Hc is
shown; we see that the system undergoes a metamagnetic
transition to prevent the majority-spin band from touching
the Van Hove points. In �c�, we additionally see that the
induced spin-density wave opens small gaps at the Fermi
level close to the Van Hove points. This has important con-

sequences for the appearance of a nematic phase as we will
see in the next section.

IV. NEMATIC INSTABILITY

In this section, we explore the occurrence of a nematic
phase in our model for the two cases of a magnetic field
applied in z and x directions, respectively. For this purpose,
we introduce an additional interaction term,23,26

Hn =
1

2N
�
kk�

�
ss�

fkk�nksnk�s� �42�

with a coupling function fkk� only contributing for zero-
momentum transfer, i.e., for the forward scattering, which is
the relevant interaction for a nematic phase to occur.27 We
then separate the coupling function,

fkk� = gdkdk� �43�

and choose a dx2−y2 symmetric form for the form factors,
dk=cos kx−cos ky. This term can then lead to a nematic

Hx/H0
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0.006

0.008

0.01

0.012

0 1 2 3 4 5 6

M
x

M
y

0

FIG. 8. Uniform magnetization Mx �solid line� and staggered
magnetization My �dashed line� for n=1.336 for an applied field in
x direction for a temperature of T=5
10−4t and �=0.05t. For this
temperature, the metamagnetic transition is clearly of first order.

H<Hc H>Hc

H=0

H<Hc H>Hc

(a)

(c)

(b)

FIG. 9. �Color online� �a� Fermi surface for an electron density
of n=1.336 without an applied field. Due to the rotation of the O
octahedra, the Brillouin zone is folded back, denoted by the dashed
lines. �b� and �c�: Fermi surface just below and above the critical
fields in z and x directions, respectively. For clarity, only a small
section of the BZ is shown indicated by the little square in �a�. For
the case of a field applied in plane �c�, small gaps open close to the
Van Hove points.
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phase, reducing the symmetry from C4 to C2.
Introducing again a mean-field decoupling which is spin

independent, we write for this interaction,

Hn = �
ks

�dknks −
N

2g
�2 �44�

with

� =
g

N
�
k�

dk��nk�
 . �45�

Since dk=−dk+Q but is isotropic in spin space, we can deal
with it by replacing

�k
�1� → �̃k

�1� = �k
�1� + �dk �46�

while all the above formulas still hold with the additional
self-consistency equation,

� = −
g

N
�

�=1,2
�
ks

nF���ks��− 1��
dk�̃k

�1�

�gk
2 + ��̃k

�1��2
�47�

for the z direction case and

� = −
g

N
�
�,�

�
k

nF����,k�
�− 1��dk��̃k

�1� � h̃0
x�

��m̃y � gk�2 + �h̃0
x � �k

�1��2

�48�

for the x direction case, respectively.
For sufficiently strong g, we find a magnetization curve

for fields applied in z direction as is shown in Fig. 10. The
two jumps in the magnetization border an intermediate phase
with a finite value of the nematic order parameter �. The
instability in this case is again driven mainly by electrons
whose momenta lie close to the Van Hove points. To obtain
an intermediate phase before a single metamagnetic jump
removes all such electrons from the Fermi surface, a critical
scattering strength gc is necessary. Above that, a nematic
phase is entered at some magnetic field Hc1 and left again at
Hc2.

The T-H diagram shown in Fig. 11 shows first-order tran-
sitions for low temperatures up to T�0.001t, second-order

transitions for higher temperatures until at T�0.0016t the
nematic phase disappears completely to make way for a
metamagnetic crossover �not shown�. This behavior has al-
ready been observed in similar calculations.14,28

For the case of a field applied in x direction, a very similar
behavior is observed, however, with one important differ-
ence. Since the induced spin-density wave already removes
some weight from the Fermi surface close to the Van Hove
points, a larger forward-scattering strength is required for the
occurrence of a nematic phase, i.e., gc

x�gc
z. Therefore, there

is a range of g, where there exists already a nematic phase
for fields in z direction but only one metamagnetic jump is
observed for in-plane fields. This result is summarized in the
phase diagram in Fig. 12. As a function of the SOC strength
� and the forward-scattering strength g, we find three re-
gions. In addition to the two obvious ones, where there is

Hz/H0
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0.006

0.008

0.01

3.5 3.75 4 4.25 4.5

M
z

η

0

FIG. 10. Mean-field results for the magnetization and the nem-
atic order parameter � for a field applied in z direction for a tem-
perature of T=5
10−4t showing an intermediate nematic phase
bounded by two first-order transitions. Here, g=0.33 and n=1.336.

Hz/H0
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0.0015

0.002

3.5 4 4.5

T
[t
]

0

FIG. 11. Phase diagram for a magnetic field applied in z direc-
tion. While for low temperatures, the two consecutive transitions
are of first order �solid line�, they become second order before the
nematic phase disappears completely �dashed line�. Above this tem-
perature, a metamagnetic crossover can still be seen.
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g
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c

g
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c||c
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α
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I II III0.04
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0.02

g [t]
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FIG. 12. Critical forward-scattering strength for the cases of an
applied field in z and x directions, respectively. We can distinguish
three different regions. I: the forward-scattering strength is too
week to enter a nematic phase, no matter in what direction the
magnetic field is applied. Only a single metamagnetic transition
occurs. II: while there is a nematic phase for fields applied in z
direction, no such phase occurs for fields in plane. This region
corresponds to the case found in Sr3Ru2O7. III: the forward-
scattering strength is strong enough such that a nematic phase will
occur for fields in any direction. Inset: schematic of the phase dia-
gram showing that the nematic phase only occurs for fields close to
the z axis.
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either no intermediate phase �region I� at all or one for fields
applied in any direction �III�, there is now a new region with
a nematic phase only for fields applied in z direction �II�.
Obviously, this region corresponds to the case of Sr3Ru2O7.

V. DISCUSSION AND CONCLUSIONS

The range of the forward-scattering strength for which in
our calculation a nematic phase is only observed for fields in
z direction is not very large. Note, however, that the nematic
phase only appears in a very narrow region ��Hc2
−Hc1� /Hc1�3% �Ref. 11�� and thus, g is only slightly bigger
than gc

z. This is illustrated in Fig. 13 where the dependence of
the critical fields on the forward-scattering strength is shown.
The width of the nematic phase grows rather rapidly with
increasing g. Therefore, the actual size of the forward-
scattering strength might well lie in region II of Fig. 12.

Obviously, not only the strength of the SOC but also the
nesting properties of the spin-polarized Fermi surfaces play
an important role for the appearance of the anisotropy effect.
Nesting properties are a factor of tuning our model to the
vicinity of a SDW instability. To analyze the impact of en-
hanced SDW correlations, we consider two different electron
densities and corresponding on-site interaction strengths U
with Uc

FM−U=const �see crosses in the left part of Fig. 6�.
This allows us to examine the cases of two different prox-
imities to a SDW instability with comparable strengths of
FM correlations. One important finding is that the stronger
the SDW correlations, the more pronounced the anisotropy
effect and thus, the smaller the ratio Hc

x /Hc
z becomes. This is

depicted in Fig. 14. In Fig. 6, we also show that the ferro-
magnetic and SDW instabilities can be competing for the
chosen parameter range. We fix our model parameters in a
way to avoid the occurrence of a staggered magnetic moment
for any value of the magnetic field along the z axis while the
staggered moment is field induced for in-plane fields.

We should also comment on the strength of the SOC �
that we expect for this system. To get an estimate of the

on-site SOC strength � for p electrons on the oxygen, we
take the O2− vacuum value, ��10 meV. A very crude esti-
mate of the staggered SOC coupling from Eq. �7� then yields

�

t
�

2�

	

tpd�

tpd
�

2�

	
. �49�

Taking estimates for 	�1.5 eV, we find that for � a value
on the order of a percent of t seems reasonable.29 Comparing
Figs. 12 and 13, this would allow for a nematic phase with a
width of �Hc2−Hc1� /Hc1�2%, in agreement with experi-
ment. For a more reliable estimate of �, density-functional
theory calculations should be performed.

Finally, some remarks to the nematic phase are in order.
As was already mentioned, the nematic phase introduced
here is the same as discussed by other authors.14–16 As shown
by these authors, the nematic phase could account for several
experimentally observed phenomena, such as the anomalous
resistivity or the non-Fermi-liquid behavior of the suscepti-
bility and the specific-heat coefficient.

To conclude, we showed that the rotated oxygen octahe-
dra lead to a staggered hopping that can be described with
the help of a �staggered� spin-orbit coupling of Rashba type.
This introduces an anisotropy of the response to a magnetic
field, namely, an induced spin-density wave for the case of
in-plane fields. This staggered magnetization could be ob-
served in neutron-scattering experiments. To our knowledge,
this kind of experiment has not been performed so far. The
additional magnetization has, first, the effect that the critical
field for a metamagnetic transition is shifted to lower values
for in-plane fields. Also, the critical temperature T� up to
which the transition is first order is higher for fields in the xy
plane. Last and most important, the spin-density wave opens
gaps at the Fermi level that lead to an anisotropy for the
appearance of a nematic phase. Additionally considering
spin-orbit coupling effects of the Ru orbital would account
for the full anisotropy of Hc �g-tensor anisotropy�. Therefore,
the present work allows for a picture that is qualitatively
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FIG. 14. Anisotropy of the critical field in x direction compared
to the value for the z direction for the densities n=1.336 �solid line�
and n=1.339 �dashed line�, respectively. The value for the on-site
interaction is chosen as indicated in Fig. 6. The dependence on the
strength of the spin-orbit coupling is more pronounced the closer
the system is to a SDW instability.
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FIG. 13. Phase diagram for a magnetic field applied in z direc-
tion depending on the forward-scattering strength g. Below a criti-
cal strength gc

z, no nematic phase is entered but the system under-
goes a single metamagnetic transition connected to the proximity to
the ferromagnetic instability as discussed above. Above gc

z, the sys-
tem enters a nematic phase whose region grows with increasing g.
Here, T=5
10−4t.
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consistent with experimental observations including the
anisotropies in Hc, T�, and the appearance of a nematic
phase.

Note added. While preparing for submission we noticed
the recent paper30 which studies the influence of spin-orbit
coupling and the doubling of the unit cell on the nematic
phase of Sr3Ru2O7.
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